Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 251: 126387, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37595727

RESUMO

The present study reports on the encapsulation of Curcuma longa (L.) essential oil (CLEO) in chitosan nanopolymer as a novel nanotechnology preservative for enhancing its antibacterial, antifungal, and mycotoxin inhibitory efficacy. GC-MS analysis of CLEO showed the presence of α-turmerone (42.6 %) and ß- turmerone (14.0 %) as the major components. CLEO-CSNPs were prepared through the ionic-gelation technique and confirmed by TEM micrograph, DLS, XRD, and FTIR. In vitro, bactericidal activity of CLEO-CSNPs at a concentration of 100 µg/mL showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, which mostly rely on ROS production and depend on its penetration and interaction with bacterial cells. Furthermore, the CLEO-CSNPs during in vitro investigation against F. graminearum completely inhibited the growth and zearalenone and deoxynivalenol production at 0.75 µL/mL, respectively. Further, CLEO-CSNPs enhanced antioxidant activity against DPPH• and ABTS•+ with IC50 values 0.95 and 0.66 µL/mL, respectively, and without any negative impacts on germinating seeds were observed during the phytotoxicity investigation. Overall, experiments concluded that encapsulated CLEO enhances antimicrobial inhibitory efficiency against stored foodborne pathogens.

2.
Int J Biol Macromol ; 243: 125160, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271266

RESUMO

The present study investigated the comparative efficacy of garlic essential oil (GEO) and its nanoencapsulated within chitosan nanomatrix (GEO-CSNPs) as a novel preservative for the protection of stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination and lipid peroxidation against a toxigenic strain of Aspergillus flavus. GC-MS examination of GEO showed the presence of allyl methyl tri-sulfide (23.10 %) and diallyl sulfide (19.47 %) as the major components. GEO-CSNPs were characterized through TEM micrograph, DLS, XRD, and FTIR instrumentation. During the in-vitro investigation, GEO-CSNPs at 1.0 µL/mL dose completely inhibited the growth of A. flavus while preventing the synthesis of AFB1 at 0.75 µL/mL compared to the pure GEO. The biochemical analysis reveals that A. flavus exposed to GEO-CSNPs significantly changed its ergosterol level, ions leakage, mitochondrial membrane potential (MMP), and antioxidant system. Additionally, GEO-CSNPs exhibited enhanced antioxidant activity against DPPH compared with GEO. Likewise, during in-situ experiments on A. hypogea GEO-CSNPs MIC and 2 MIC concentration prohibited fungal development, AFB1 synthesis, and lipid peroxidation or inflicting any negative impacts on germinating seeds. Overall, investigations concluded that GEO-CSNPs could be used as a novel preservative agent to improve the shelf life of stored food commodities.


Assuntos
Aflatoxinas , Quitosana , Alho , Óleos Voláteis , Antifúngicos/farmacologia , Antifúngicos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/química , Quitosana/farmacologia , Quitosana/química , Aspergillus flavus , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA